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A method for calculating the parameters of natural gas exchange between a building within which there oc-
curs combustion and the environment with regard for the inhomogeneity of the temperature distribution along
the height is proposed. Analytical formulas for determining the mass flow rates of the gases, the height of the
neutral plane, the mean-mass temperature of the gases flowing outward, and the pressure distribution along
the height inside the building have been obtained. A correlation between the results of the calculations of the
mass flow rates of the gases flowing outward has been made using expressions obtained and assuming that
the temperature is constant along the height. It is shown that the inhomogeneity of the temperature field sub-
stantially influences the critical period of combustion.

In Russia, the level of people’s deaths in fires is the highest in the world [1]. Therefore, improvement of the
fire and explosion safety of industrial and residential buildings is an important problem.

To provide safe evacuation of people, it is necessary to know the critical period of combustion [2] (the period
from the onset of combustion to the instant where only one risk factor of fire reaches the value critical for man at the
level of the working zone). In Russian safety standards, this period is determined by simplified methods of calculating
heat and mass transfer. For example, the formulas given in [2] can be correctly used for analytical solution only in the
case of fire within a building with a small openness (the ratio of the area of the opening to the area of the ceiling)
or at the initial stage of a fire within a building with an arbitrary openness. Under these conditions, there occurs only
outflow of the gas mixture outward.

According to [2], the integral model of the thermodynamics of gases in a fire [3], which accounts for the in-
flow of the outer air through an opening into the building, can also be used. However, it is assumed in this method
for calculating the parameters of natural gas exchange through an opening that the temperature is constant along the
height at any instant of time.

In [3], formulas for calculating the mass flow rates of the gases with regard for the variability of the tempera-
ture along the height have been obtained for the case of two openings, one of which operates only to release the gases
outward, and through the other opening the outer air enters the building. Moreover, these expressions have been de-
rived under the assumption that the temperature inside the building is constant along the height of each opening and
is equal to the temperature at the half-height of the corresponding opening. Therefore, the influence of the inhomo-
geneity of the temperature field on the parameters of gas exchange calls for further investigation.

Main Assumptions. The gas medium of a building is an open thermodynamic system between which and the
environment there occurs mass and energy exchange through the open openings and the fencing constructions of the
building. In modeling of heat and mass transfer, the following assumptions and simplifications of the thermogasdy-
namic pattern of a fire are introduced.

It is assumed (as in the earlier works, for example, [3, 4]) that the characteristics of gas exchange between
the building and the environment through an open opening of the building are uniquely determined at each instant of
time by the mean-volume parameters of the gas medium inside the building.

We will assume that the surfaces of equal pressure inside and outside the building and the surfaces of "zero"
velocity in the region of the opening are planes and coincide with each other [3]. This is true for the case where the
kinetic heads of the gases near the inner plane of the opening on the inside of the building (in the region of outflow
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of the gases outward) and of the outer air near the outer plane of the opening on the outside of the building (in the
region of inflow of the outer air inward) are neglected in the Bernoulli equation written along the lines of flow
through the opening. Moreover, the surfaces of equal pressures and velocities can differ markedly from the plane in
the case where the fire load and the opening are positioned asymmetrically relative to each other [5].

It is assumed that the geometric position of the fire load within the building has no effect on the parameters
of heat and mass exchange between the building and the environment through the open openings of the building and
on the heat removal into the fencing constructions. The observations of real fires [3] and the theoretical investigations
[5] show that this assumption is true in the case where the combustible material is positioned in the so-called zone of
reciprocal "insensibility" of the opening [5]. This zone is characterized by the fact that, at any position of the fire load
within it, the parameters of heat and mass exchange (mean-volume parameters, mass flow rates of the gases flowing
outward and of the air flowing inward, heat flows to the fencing constructions, etc.) remain practically unchanged.

In the case where the integral model is used with the indicated assumptions and simplifications of the ther-
mogasdynamic pattern of a fire, the schematic diagram of heat and mass exchange within a building has the form
shown in Fig. 1. Heat flow is removed from the place of combustion 5 to the fencing constructions and to the envi-
ronment through the openings. Above the neutral plane 6 the mixture of hot gases flows outward, and below it the
outer air enters the building.

Pressure Distribution along the Height of the Building. In the case of fire within a building, between it
and the environment (or a neighboring building) there occurs natural gas exchange through the open openings (doors,
windows, etc.) of the building. In the integral model [3, 4], the pressure distribution along the vertical inside and out-
side of the building is assumed to be linear on condition that the local density of the gas medium at all the points of
the building is equal to the mean-volume density.

The results of the experimental investigations show that the temperature distribution along the height of the
building can be approximated in many cases by the following dependence [3]:

T = 
Tm

1 + a (1 − z ⁄ h)
 , (1)

where a = f(Tm) is the experimental dimensionless coefficient.
Assuming that the pressure inside the building is constant (within 0.01% [3]) in the case of fire within it,

from the Mendeleev–Clapeyron equation we obtain that the local density changes with height in accordance with the
formula [3]

ρ = ρm (1 + a (1 − z ⁄ h)) . (2)

Fig. 1. Scheme of calculation of heat and mass transfer within a building: 1)
walls; 2) ceiling; 3) open opening; 4) combustible material; 5) place of com-
bustion; 6) neutral plane.
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Then, according to the differential equation of hydrostatics [3], the pressure inside the building changes with height in
the following way:

dp = − ρm (1 + a (1 − z ⁄ h)) gdz . (3)

Integrating expression (3) over the height from z = h to the running coordinate z, we obtain, in place of the
linear pressure distribution [3], a square distribution:

p = ph + ρmgh 



a
2

 z
_2

 − z
_
 (1 + a) + 

2 + a
2




 . (4)

Equation (4) differs from the formula obtained in [3] by the last term in brackets.
The height at which the pressure inside the building is equal to the mean-value pressure can be determined

from the equation 

pm = 
1

2h
 ∫ 
0

2h

pdz . (5)

Substitution of the pressure distribution (4), in place of the local pressure, in expression (5) gives

pm = ph + 
1
6

 ρmgah . (6)

It is seen from Eq. (6) that, in the case of an inhomogeneous temperature field, the pressure at the half-height of the
building differs from the mean-volume pressure, which is disregarded in the mathematical model [3, 4].

Equating the right sides of expressions (4) and (6) and solving the quadratic equation obtained, we determine
the dimensionless height at which the pressure is equal to the mean-volume pressure:

z
_

m = − 
1 + a

a
 + √




1 + a
a





2

 + 
6 + 10a

3a
 . (7)

Equation (7) differs from the corresponding equation in [3].
Plane of Equal Pressures. Let us find the position of the plane of equal pressures (neutral plane). The pres-

sures inside and outside the building at the height of the neutral plane are equal. Therefore, equating the right sides
of Eq. (4) and the expression from [3] characterizing the linear pressure distribution outside the building, we obtain a
quadratic equation for the dimensionless height of this plane. Its positive root is equal to

z
_∗

 = 
ρe.a − ρm (1 + a)

ρma
 









√1 − 
2ρma

gh [ρe.a − ρm (1 + a)]2
 



pm − pe.a − gh 




ρe.a − ρm 




1 + 

a

2













 − 1









  . (8)

Equation (8) differs from the corresponding expression in [3].
Mass Flow Rates of the Gases through an Opening. Knowing the pressure distribution along the height in-

side and outside the building, we can find the mass flow rates of the gas mixture flowing outward and of the outer
air entering the building by the Bernoulli equations [3].

The mass flow rate of the gases flowing outward at a height z through an elementary area of width bopen and
height dz is equal to [3]

dGfl.g = bopen √ 2ρ (p − pe.a)  dz . (9)

Integrating expression (9) over the height from z = z∗  to z = zup with regard for Eqs. (2) and (4), we obtain a formula
for calculating the total mass flow rate of the gases flowing outward through the opening in the case where the height
of the neutral plane zlow < z∗  < zup:
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where

A = ρe.a − ρm (1 + a) ;   B = 
ρma

2h
 (zup

2
 − z

∗ 2) + A (zup − z
∗ ) .

In the case where z∗  ≤ zlow, the mass flow rate is determined by the formula

Gfl.g = ξbopen √2ρmg  
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here

C = 
ρma

2h
 (zlow

2
 − z

∗ 2) + A (zlow − z
∗ ) .

At z∗  ≥ zup [3] Gfl.g = 0.
The elementary mass flow rate of the outer air entering the building is equal to [3]

dGe.a = bopen √2ρe.a (pe.a − p)  dz . (12)

Integrating Eq. (12) over the height from z = zlow to z = z∗  with regard for formulas (2) and (4), we obtain
an expression for the total mass flow rate of the air entering the building through the opening at zlow < z∗  < zup:
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In the case where z∗  > zup, the mass flow rate is determined as

Ge.a = ξbopen √ 2ρe.ag  
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At z∗  ≤ zlow [3], Ge.a = 0.
Mean-Mass Temperature of the Gases Flowing Outward. Using expression (1), we can obtain a formula

for determining the coefficient aT, which allows for variation of the mean-mass temperature of the gases flowing out-
ward from the mean-volume temperature of the gas medium of the building and appears in the equation of the law of
energy conservation for the gas medium of the building [3]:

aT = Topen
 ⁄ Tm . (15)

The mean-mass temperature of the gases flowing outward can be determined in the following way [3]:

Topen = 
1

zup − zlow
  ∫ 

zlow

zup

 Tdz . (16)

Substituting Eq. (1), in place of the local temperature, in expression (16) and rearranging gives

aT = 
h

a (zup − zlow)
 ln 


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1 + a (1 − zlow
 ⁄ h)

1 + a (1 − zup
 ⁄ h)




 . (17)

In [3], aT = 1 or it is determined by the formula

aT = 1 + 0.1 (1 − exp [− 50 (θ − 1)] (1 − 0.24θ) , (18)

where θ = Tm
 ⁄ Tm0, Tm0 being the initial value of the mean-volume temperature.

The condition 1 ≤ θ ≤ 4 (Tm ≤ 1200 K [3]) is fulfilled for the majority of real fires. Therefore, expression (18)
gives aT ≥ 1 for any initial data of the problem. This is in contradiction with the thermogasdynamic pattern of the in-
itial stage of the fire, since cold air with a temperature of lower than the mean-volume temperature is forced out
through the opening outward if it is positioned in the lower part of the building, i.e., aT ≤ 1 in this case. Formula (17)
proposed by us is free of this drawback.

Critical Period of Combustion. The analytical expression [6] for the critical period of combustion, which ac-
counts for the variation of the mean-mass temperature of the gases flowing outward from the mean-volume tempera-
ture of the gas medium of the building, has the form

τcr = 




B1aT

A1
 ln 


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Tm0
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
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


1 ⁄ n

 . (19)

The parameters A1, B1, and n in expression (19) are determined by the geometric dimensions of the building and the
thermophysical properties of the combustible material. We have n = 3 for a solid fire load in the case of circular dis-
tribution of fire and n = 1.5 in the case of combustible liquid [6].

Influence of the Inhomogeneity of the Temperature Field along the Height on the Parameters of Gas
Exchange. Let us consider the distinction between the parameters of natural gas exchange through an opening, deter-
mined with and without regard for the variability of the density along the height.

Figure 2 shows the dependences of the relative mass flow rate of the gases flowing outward on the relative
height of the neutral plane, determined for different values of the coefficient of nonuniformity of the temperature field
by Eq. (10) and the expression from [3], which is true for the case where the temperature is constant along the height:

Gfl.g,o = 2 ⁄ 3 √2gρm (ρe.a − ρm)  ξbopen (zup − z
∗ )1.5

 . (20)

The initial data were as follows: ρm = 0.8 kg/m3, h = 1.5 m, and zup − zlow = 1 m.
It is seen from Fig. 2 that at the developed stage of the fire, where z∗  ⁄ zup C 0.4 [4], at a ≤ 0.2 the nonunifor-

mity of the temperature field along the height only slightly influences the mass flow rate of the gases flowing outward
(less than 10%), and this influence is greater (to 20%) at 0.2 < a ≤ 0.4. In the transient regimes of a fire (the initial
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stage and the phase of dying), where the neutral plane can be positioned at any height, the difference between the re-
sults of the calculations by formulas (10) and (20) can reach 100% or more.

The relative height at which the pressure inside the building is equal to the mean-volume pressure is shown
in Fig. 3 (Eq. (7)). It is seen from the figure that the influence of the parameter of nonuniformity of the temperature
field on this height does not exceed 5%.

The distributions of the pressure drop ∆p = p − pe.a along the height of the building (the local pressures are
determined from Eq. (4) for the pressure inside the building and from the expression from [3], which is true for the
case of linear pressure distribution in the outer air) at different heights of the neutral plane are shown in Fig. 4. It is
seen from Fig. 4 that the pressure drop is not a linear function of the height, as in the case of a homogeneous tem-
perature field inside the building [3].

Figure 5 shows the dependences of the coefficient of mean-mass temperature of the gases flowing outward,
determined from expression (17), on the coefficient of inhomogeneity of the temperature field at the following initial
data: half-height of the building h = 1.5 m and height of the opening zup − zlow = 1 m. We consider two variants of
location of the opening along the height of the building: the upper cut of the opening is at the level of the ceiling
zup = 3 m and the lower cut is at the level of the floor zlow = 0 m.

It is seen from Fig. 5 that the mean-mass temperature of the gases flowing outward is lower than the mean-
volume temperature (aT = 0.75) by 25% in the case where the lower cut of the opening is at the level of the floor
(door) and the parameter of inhomogeneity of the temperature field along the height a = 0.6, and this temperature is
higher than the mean-volume temperature (aT = 1.75) by 75% in the case where the upper cut of the opening is at
the level of the ceiling (window). A calculation by formula (18) gives aT = 1.07 in both cases of location of the open-
ing at the instant the first stage of the fire is completed (Tm = Tcr = 343 K [3]).

Fig. 2. Dependence of the relative mass flow rates of the gases flowing out-
ward on the height of the neutral plane: 1) a = 0.001; 2) 0.2; 3) 0.4.

Fig. 3. Dependence of the relative height at which the pressure inside the
building is equal to the mean-volume pressure on the parameter of inhomo-
geneity of the temperature along the height of the building.

Fig. 4. Distribution of the pressure drop along the height of the opening at a
height of the neutral plane z∗  ⁄ zup = 0.4 (a) and 0.8 (b): 1) a = 0.001; 2) 0.2;
3) 0.4. ∆p, Pa.
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The critical period of combustion determined from expression (19) with regard for Eq. (17) proposed by us
differs substantially from that obtained for the case where the temperature is constant along the height:

a) for a combustible liquid: τ
_

cr = 1.45 (the opening is positioned at the top) and τ
_

cr = 0.825 (the opening is
positioned at the bottom);

b) for a solid combustible material: τ
_

cr = 1.205 (the opening is positioned at the top) and τ
_

cr = 0.908 (the
opening is positioned at the bottom).

CONCLUSIONS

1. We have obtained formulas for determining the following parameters of natural gas exchange through an
open opening of a building within which there occurs combustion with allowance for the inhomogeneity of the tem-
perature field along the height: the mass flow rates of the gases, the height of the neutral plane, the mean-mass tem-
perature of the gases flowing outward, and the pressure distribution along the height inside the building.

2. The critical period of combustion substantially depends on the variability of the temperature along the
height.

3. The inhomogeneity of the temperature field along the height should be taken into account at the initial
stage of a fire and in the phase of its dying. The influence of this factor is weak at the developed stage of the fire
because of the intensive mixing of the combustible products with air in the building.

4. There is a need to further investigate the influence of the parameter of inhomogeneity of the temperature
field a on the parameters of gas exchange with regard for the variability of this coefficient with time. This formulation
of the problem can be realized using the field model of the thermodynamics of gases in a fire [5].

NOTATION

T, temperature, K; ρ, density, kg/m3; h, half-height of the building, m; z, coordinate along the height of the
building, m; z

_
 = z/h, dimensionless coordinate along the height of the building; p, pressure, Pa; g, free fall accelera-

tion, m/sec2; z
_

m = zm/h; zm, height at which the pressure is equal to the mean-volume pressure, m; z′, height of the
neutral plane, m; z

_ ∗  = z
_ ∗ /h, relative height of the neutral plane; bopen, width of the opening, m; G, mass flow rate of

the gas, kg/sec; zlow and zup, coordinates of the lower and upper edges of the opening relative to level of the ceiling,
m; ξ, coefficient of hydraulic resistance of the opening; Topen, mean-mass temperature in the opening, K; Tcr, critical
temperature, K; Qc, Qw, and Qf, heat flows flowing to the ceiling, to the walls, and to the floor, W; Qr, heat flow
flowing through the openings, W; Ψ, rate of gasification of the combustible material, kg/(sec⋅m2); τ

_
cr = τcr

 ⁄ τcr,o; τcr,
critical period of combustion, sec; a, coefficient of inhomogeneity of the temperature field; aT, coefficient of variation
of the mean-mass temperature in the opening from the mean-volume temperature. Subscripts: m, mean-volume parame-
ters; h, value of the parameter at the half-height of the building; e.a, outer air entering the building; fl.g, gases flowing

Fig. 5. Dependence of the coefficient of mean-mass temperature of the gases
flowing outward on the coefficient of inhomogeneity of the temperature field:
1) the upper cut of the opening is at the level of the ceiling; 2) the lower cut
of the opening is at the level of the floor.
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outward; o, parameters at a constant temperature along the height; r, radiant; low, lower; up, upper; c, ceiling; w, wall;
f, floor; cr, critical; open, opening; 0, initial.
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